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Abstract

3D understanding is a key capability for real-world Al assistance. High-quality
data plays an important role in driving the development of the 3D understanding
community. Current 3D scene understanding datasets often provide geometric and
instance-level information, yet they lack the rich semantic annotations necessary
for nuanced visual-language tasks. In this work, we introduce DenseScan, a novel
dataset with detailed multi-level descriptions generated by an automated pipeline
leveraging multi-view 2D images and multimodal large language models (MLLMs).
Our approach enables dense captioning of scene elements, ensuring comprehensive
object-level descriptions that capture context-sensitive details. Furthermore, we
extend these annotations through scenario-based question generation, producing
high-level queries that integrate object properties, spatial relationships, and scene
context. By coupling geometric detail with semantic richness, DenseScan broad-
ens the range of downstream tasks, from detailed visual-language navigation to
interactive question answering. Experimental results demonstrate that our method
significantly enhances object-level understanding and question-answering perfor-
mance in 3D environments compared to traditional annotation pipelines. We release
both the annotated dataset and our annotation pipeline to facilitate future research
and applications in robotics, augmented reality, and beyond. Through DenseScan,
we aim to catalyze new avenues in 3D scene understanding, allowing researchers
and practitioners to tackle the complexities of real-world environments with richer,
more contextually aware annotations.

1 Introduction

Understanding 3D world is a crucial in various applications such as robotics and autonomous driving,
where agents are expected to know about the surrounding environment and carry out complex tasks
based on human’s instructions. However, current 3D MLLMs [15} 42} 41} [14] perform poorly in
these practical applications and there are still significant gaps between their capabilities and the
requirements of real-world applications. The scarcity of high-quality 3D multimodal data severely
limits the development of 3D MLLMs.

Although there are many multimodal datasets [9} 3,19} 41] in the current 3D community available
for training 3D MLLMs, these datasets such as ScanRefer [9], ReferIt3D [3], and Reason3D [[19]]
only focus on localizing 3D objects based on short, direct or implicit text referring. Besides, recent
advances in 3D Question Answering datasets [28 18} 6] emphasize integrating point clouds, images,
and textual data to form rich multimodal representations, but LLM-based QA-pairs generation often
introduce hallucinated information and contextual misalignment. As a result, they cannot effectively
inject rich 3D knowledge into models during training, nor can they effectively benchmark how far
current MLLMs are from real-world applications. Unlike prior referring setups optimized for short
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disambiguation, our scenario-driven segmentation requires models to parse multi-sentence context,
inter-object relations beyond the target, and functional cues to produce precise masks.

In the past, 3D multimodal data relied on manual annotation, which was extremely costly and made it
difficult to produce a rich diversity and massive quantity of annotations to drive rapid community
development. Some recent works [[19} 41, [14] have attempted to design automated pipelines to
generate 3D multimodal data, such as using GPT-like models to refine existing textual descriptions
rather than generating new ones from direct scene analysis. These models, though effective in
producing fluent text, lack a deep understanding of spatial relationships, object affordances, and
occlusions, as they operate in a predominantly text-driven space without strong visual grounding.

Currently, 2D MLLMs such as GPT-40 [2], Gemini, Qwen2.5 VL [39], and InternVL 2.5 [[10]
demonstrate powerful capabilities, including fine-grained understanding of visual signals and robust
reasoning abilities. The responses generated by these models even far exceed the quality of data
produced by most skilled human annotators. However, the quality of 3D multimodal datasets is
significantly lower than that in the 2D community, and the intelligence level of 3D MLLM:s lags far
behind 2D MLLMs.

In this paper, we aim to design a systematic and efficient pipeline that leverages 2D MLLMs to
produce multi-level (including object-level and scene-level) high-quality 3D data, in order to further
advance the 3D MLLM community. Specificly, we propose an automated pipeline to annotate
ScanNet [11] with detailed scene-level descriptions.

Our automated annotation system is organized into four distinct stages: 1) we initiate the process with
multi-level object captioning, where state-of-the-art 2D MLLMs generate detailed captions for objects
in multi-view 2D images, effectively capturing rich semantic information; 2) These initial captions
undergo a rigorous phase of filtering and consistency checking, along with style adaptation, to
transform them into natural-flow referring expressions that are coherent and contextually appropriate;
3) leverages multi-level object captions, we generate scenario-driven questions by prompting the
MLLM annotator to draw on its world knowledge to suggest multiple frequent events or interactions
that are typical for similar scenes. It is important to note that these event cues are not necessarily
accurate depictions of what is happening in the specific scene, but rather informed hypotheses
based on general knowledge; they are then seamlessly combined with object descriptions to form
complex scenario-driven referring expressions that reflect intricate contextual relationships; 4) the
generated annotations are subjected to LLM verification, augmented by human-assisted filtering, to
ensure their accuracy and establish robust validation benchmarks. The resulting dataset, DenseScan,
comprises 1,513 scenes and 20,113 object instances from ScanNet [L1], featuring 38,765 dense
referring expressions and 37,483 scenario-based questions. Compared to existing referring datasets,
DenseScan stands out by offering significantly richer linguistic diversity and more precise object
annotations while maintaining a comparable scale.

Along With the DenseScan dataset, we introduce a novel task called scenario-driven segmentation,
which requires models to locate objects and generate segmentation masks based on detailed, long-text
descriptions. Compared to traditional referring segmentation, which typically involves short referring
expressions tied to specific objects, scenario-driven segmentation presents a greater challenge by
incorporating complex contextual cues, spatial relationships, and functional attributes within a scene.
This task pushes models to move beyond simple object identification and short referring expression
learning, requiring deeper semantic understanding and reasoning about object interactions within
diverse environments.

To tackle the challenge of complex scenario-driven reasoning in 3D point clouds, we propose
Dense3D, a novel LLM-based framework that uniquely embeds multi-modal information rather
than relying solely on 2D image inputs. Our model consists of three key components: a Point
Encoder, which applies voxelization and a Sparse 3D U-Net backbone to extract point-wise features,
further refined through a superpoint pooling layer for computational efficiency; Multi-Modal LLMs,
which integrate both 2D multi-view images and 3D point cloud representations (from depth map
and camera paramters) to enhance spatial and semantic understanding; and a 3D Query Decoder, a
transformer-based module that translates high-level textual cues into precise segmentation masks.
By fusing 3D point clouds, 2D multi-views images, and textual descriptions—Dense3D achieves
deeper contextual reasoning and more precise segmentation, setting a new standard for multi-modal
3D scene understanding.
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Figure 1: Overview of DenseScan Data Generation Pipeline. Stage I: crop the target object and
generate object-level description; Stage 2: highlight target object in a single frame and generate
frame-level description to capture spacial dependencies with the surroundings; Stage 3: use multiple
frames with target object highlighted to compose scene-level descriptions; Stage 4: Raw scene-level
description need to go through a LLM for consistency checking, and in-consistent description will be
eliminated; Stage 5: Adopt MLLM annotator to generate scenario-driven questions and verified by
LLM and human before release to benchmark.

In summary, our contributions are threefold:

1. Automated Annotation System. We have developed an automated annotation system that
leverages state-of-the-art 2D MLLMs to generate reliable and high-quality 3D multimodal
data. Based on this pipeline, we have created the DenseScan dataset, which features rich,
multi-level annotations—including detailed object-level captions and comprehensive scene-
level descriptions—that better capture complex spatial relationships and contextual cues.

2. Scenario-Driven Segmentation. We have manually reviewed and refined a more challeng-
ing benchmark that incorporates a novel task: scenario-driven segmentation, with requires
models to generate precise segmentation masks guided by long, context-rich descriptions,
pushing the boundaries of traditional referring segmentation and better reflecting real-world
application demands.

3. Dense3D Framework. We have introduced Dense3D, a 3D MLLM framework that effec-
tively fuses 3D point cloud data, 2D multi-view images, and textual information. Through a
Point Encoder, a Multi-Modal LL.Ms, and a 3D Query Decoder, we achieve deeper contex-
tual reasoning and more accurate segmentation, thus taking a step further in multi-modal 3D
scene understanding.

2 Related Work

Datasets for 3D Scene Understanding. Advances in 3D computer vision are deeply intertwined
with the availability of large-scale, high-quality datasets[29., |5, (8| [7,[13]. In the realm of 3D instance
segmentation, large-scale real-world datasets are limited. Early benchmarks like ScanNet[11]] and
S3DIS[5] provided a solid foundation by offering detailed scans of real-world indoor environments
captured using RGB-D cameras or Matterport systems. Subsequently, researchers have increasingly
built upon these public datasets by incorporating diverse, richly detailed annotations [9} 3,40, [19} 21}
41]]. Notably, ScanRefer[9] provides a set of natural language referring expressions for objects in
indoor 3D scenes. Subsequent efforts, such as Referlt3D[3], refines the annotation process through
more fine-grained object categorization and the inclusion of multiple object instances per scene, and



Multi3DRefer[40], expands the task scope by accommodating descriptions that reference zero, one,
or multiple objects, which better mirrors the complexities of real-world scenarios. More recently,
several efforts have pushed the boundary even further by designing implicit object descriptions
that require higher-level reasoning, such as Reason3D[19], ScanReason[41]], Instruct3D[14] and
ReasonSeg3D[21]]. Despite these advancements, our work develop a denser and longer text description
for objects, capturing detailed semantic attributes, spatial context, and subtle visual cues that are
often overlooked in earlier datasets. Besides, while previous reasoning-based questions tend to be
abstract and focus on broad, often decontextualized logic or inference, scenario-like questions are
tightly grounded in the spatial and semantic context of a specific scene. Together, the new dataset
provide a more comprehensive framework for advancing 3D scene understanding and segmentation.

3D Multi-Modal Large Language Models. Inspired by the powerful reasoning abilities of Large
Language Models, researchers have injected LLMs into vision domain[4, 26, 24, 43|, 27, namely
multi-modal large language models (MLLMs). Upon prior works [26] 4] at integrating visual context
with language models, recent efforts has been made to develop MLLMs that seamlessly integrating
diverse capabilities for instruction-based tasks. For instance, VisionLLM[35] offers a vision-centric
interface through instruction tuning, though it doesn’t support advanced reasoning. Another novel line
of research has emerged with the debut of LISA[23]], alongside several subsequent studies [31}[32]]that
have significantly advanced the field of multimodal large language models (MLLMs) in 2D space.
Building on the advancements in 2D multimodal language models, researchers are now venturing into
the realm of 3D MLLMs, aiming to enhance spatial understanding and unlock novel applications in
complex volumetric environments. 3D-LLM[16] leverage 2D foundation models to inject 3D spatial
understanding into language models. PointLLM[38]] build on top of LLaVA [27]] to train LLM with
3D point cloud representations.

Grounding MLLMs. Recent work has aimed to fully leverage the reasoning capabilities of large
language models for addressing 3D downstream tasks such as segmentation and localization. In
particular, SegPoint[14] and Reason3D[19] focus on interpreting complex textual descriptions of
individual objects, whereas ReasonSeg3D[21] targets multi-object referring expression segmentation
with accompanying text explanations. ScanReason[41] developed comprehensive and hierarchical
3D reasoning grounding benchmark that assess fundamental-understanding of 3D world to high-level
reasoning skills. Our work distinguishes itself from previous efforts by incorporating denser text
descriptions extracted from detailed 2D visuals, while our model leverages both point cloud and 2D
visual information to enhance reasoning capabilities.

3 DenseScan

Existing 3D indoor scene datasets [9} 3| 40]] typically rely on brief, one-sentence annotations or
fragmented short-phrase labels that fail to capture the full semantic and spatial complexity of
diverse environments. Moreover, traditional annotation pipelines often overlook the rich contextual
details available from 2D RGB-D frames, thereby missing the fine-grained visual cues essential
for robust scene understanding. Although more recent datasets [14} (19} 41]] employ large language
models such as GPT-4 [2] to generate diverse referring expressions, they still struggle to incorporate
the inherent visual context of 2D spaces. ReasonSeg3D [21]] leverages GPT4o0—which supports
visual input—by providing a single scene image with its ground-truth segmentation to enhance 3D
spatial comprehension; however, this approach is constrained by the reliance on reconstructed 3D
scene images that do not fully reflect the true attributes of the objects. DenseScan addresses these
deficiencies by offering extended, detailed text descriptions that comprehensively depict each scene
and by integrating an advanced generation pipeline that harnesses intricate details from 2D scans.
This enhanced approach not only enriches the descriptive quality of the dataset but encourage more
accurate and nuanced 3D scene analysis.

DenseScan build upon a widely used 3D scene understanding dataset ScanNet [11]] by directly using
the multi-view 2D RGB-D video frames along with its semantic annotations for rich context extraction.
Specifically, DenseScan enrich each 3D scans with dense object-level captions and scenario-specific
questions, providing a richer context for downstream tasks such as referring expression segmentation,
visual grounding and question answering. An example sample of DenseScan and the detailed statistics
and distribution of the dataset is shown in Table[T]and Figure 2] respectively.
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Figure 2: DenseScan Dataset. (a) Two objects sampled from ScanNet[11] with dense-referring
expressions and scenario-driven questions. Objects shown are "office chair" and "pictures”, both
highlighted in the point cloud. (b) The distribution of description lengths, with dotted lines marking
quartiles. The x-axis is scaled logarithmically (base-10) to handle the long-tail distribution.

3.1 Data Annotation Pipeline

We carefully designed an automatic annotation pipeline to generate dense scene-level descriptions
and scenario-based referring object text expressions for ScanNet dataset [11], as illustrated in Fig.
[I] The pipeline leverages the InterVL2-76B [10] multimodal large language model (MLLM) as the
multimodal data annotator and Qwen2 [39] as our LLM assistant for consistency checking,filtering
out unidentified objects and conflicting object descriptions.

Object-Level Description. To obtain the object-level dense caption rich is instance-specific semantics
information, we first select the single video frame with the largest object area from the video frames
and mask out non-object pixels. In this way, object isolation minimizes the interference from the
background or nearby objects and directs the MLLLM annotator to focus solely on annotated object’s
features. The cropped object image is then fed into InterVL2-76B to generate detailed descriptions.

Frame-Level Description. Building upon the detailed single-object descriptions, we enrich the
single-object text description by incorporating spatial and relational information from the selected
video frame. Specifically, we enhance the visual prominence of the annotated object using yellow
contours, which serves as a visual cue to isolate the object from its surroundings while preserving
the contextual detials of the scene. The annotated image is fed into the MLLM annotator along with
a carefully designed prompt. The prompt is tailored to instruct the model to focus on generating a
caption that not only describes the highlighted object but also captures its spatial relationship and
interactions with adjacent elements.

Scene-Level Description. To acquire a comprehensive description of the scene, we uniformly
sampled 8 frames from the video, ensuring that diverse perspectives is captured. We also apply a
yellow contour to consistently highlight the target objects. These frames, along with frame-level
descriptions, are processed by InterVL2-76B though a text prompt to generate scene-level object
captions. The scene-level caption is further processed by an LLM annotator to transform into
natural-flow referring expressions that are coherent, named dense referring expression.

Scenario-Like Questions. In the final stage of our pipeline, we aim to generate scenario-like ques-
tions that target the unique aspects of the selected object. Using the scene-level caption generated
from target object, combing with a comprehensive list of all other objects present in the 3D environ-
ment, we carefully prompt the LLM annotator to craft scenario-like questions that specifically refer
only to the target object. These questions are designed to evoke contextual reasoning and encourage
nuanced interpretations that highlight the role, functionality, and significance of the object within
realistic scene scenarios.

Benchmark Quality Control. Before releasing scenario-driven questions for benchmakring, we
apply additional quality checks to the existing scenario-driven questions. Specifically, we provided
these questions to a LLM and prompt it to identify the referring objects-along with unique characteris-
tics for the objects to verify that the description accurately represents the object. Any descriptions that
are inconsistent are eliminated. Additionally, following [9], we manually eliminate under-sampled



# of Scenes  # of Descriptions Annotation Method

ScanRefer[9] 703 51,583 human labeling
Sr3D[3]] 707 83,572 human labeling
Nr3D[3] 707 41,503 human labeling
Multi3DRefer[40] 800 61,926 human + ChatGPT
Reason3D|[19] - 2,484 GPT-4]2]
Instruct3D[[14] 280 2,565 -
ScanReason[41]] 1,456 12,929 GPT-4[2]
ReasonSeg3D[21] 1,513 20,113 GPT-4V[1]
DenseScan (Ours) 1,513 76,248 InterVL2.5[10] + Qwen2[39]

Table 1: Comparison of various 3D referring expression datasets. showing the number of scenes,
number of descriptions, and annotation methods used. The proposed DenseScan features 1,513
scenes, 76,248 descriptions (including 38,765 dense-referring expressions and 37,483 scenario-based
questions), and an automated annotation pipeline, surpassing previous datasets in scale.

objects such as "stick", and structural objects such as "ceiling”, "wall" to keep a balanced distribution
of commonly referenced objects. Finally, we perform manual reviews on a random subset of the
remaining descriptions to ensure overall quality and consistency.

3.2 Dataset Statistics

We quantitatively compare DenseScan with existing 3D scene benchmarks along two key dimensions:
data scale and referring expression length.

Data Scale. DenseScan comprises 1,513 scenes and 20,113 object instances in total from ScanNet
[[L1]], with 38,765 dense-referring expressions and 37,483 scenario-based questions. Following
ScanNet [[11]], we partition it into a training set of 1201 scans and a validation set of 312 scans. As
can be seen from Table [T} DenseScan provides comparable number of referring expressions than
existing datasets like ScanRefer [9], Multi3DRefer [40]]. This is achieved through the special design
of automated data collection pipeline with MLLM annotator, which is more robust and time-efficient
compared to labor-intensive labeling.

Expression Length. Caption length is another important feature of DenseScan is its emphasis on
generating detailed, instance-specific captions. In our dataset, each object is described with referring
expressions that are notably longer and more descriptive than those in other benchmarks. While
traditional datasets often offer brief captions that focus on basic attributes, DenseScan delivers
captions that, on average, contain a higher word count—reflecting complex semantic details and
contextual relationships. This extended caption length facilitates deeper semantic parsing, enabling
models to capture intricate object properties and inter-object relationships that are critical for high-
level reasoning in 3D scenes.

3.3 Evaluation Metrics

Following traditional 3D segmentation methods [20, 36, (14} 22| [34], we adopt mean intersection
over union (mloU), which quantifies the overall alignment between the predicted and ground-truth
point cloud by averaging the Intersection over Union scores over all 3D point clouds. We also use
Accuracy (Acc) to measures the percentage of segmentation predictions that achieve an IoU above a
specified threshold k& = {0.25,0.5}

4 3D Scenario-Driven Segmentation

4.1 Task Definition

Scenario-driven segmentation extends traditional segmentation by incorporating rich, scenario-
specific semantic cues, capturing the intended real-world scenario depicted by the annotations.
Specifically, 3D scenario-driven segmentation task involves generating a 3D segmentation map
M from a given point cloud representation P of a scene, along with a long-context scenario-like
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Figure 3: Dense3D Model Architecture. Given the 3D scene and language description, the model
first reprocess 3D scene into multimodal 2D data, including RGB frames, depth map and camera
poses. Depth map and camera poses composes the 3D positional embedding, along with the RGB
frames and text descriptions to be send into the LLM. Output from LLM include special [SEG] token
that is crucial to guide the Query Decoder for mask generation.

question X}, extending beyond traditional referring expression segmentation tasks with short text
descriptions [20} 36].

4.2 Vanilla Baseline

We design a simple LLM-based framework for this task to for complex scenario-driven reasoning
within 3D point clouds. The overall architecture of Dense3D is illustrated in Figure 3]

Point Encoder. We first apply a novelization operation to the raw point cloud to discretize the spacial
data. A Sparse 3D U-Net backbone [12] is employed to extract point-wise features, represented as
F, e RN»*Cp where N is the number of sampled points and C' denotes the feature dimension. To
mitigate computational complexity, these features are further processed through a superpoint pooling
layer that leverages pre-computed superpoints [25]]. Aggregating point-wise features using average
pooling results in superpoint features F, € R™+*C%» where N, represents the number of superpoints.

Multi-Modal LLMs. To fuse 2D information in to 3D point cloud to allow model to perform
better understanding capabilities, we instruct LLM to learn detail semantics leverage the strong 2D
understanding priors of 2D MLLMs. We adopt pre-trained LLaVA-like models as our 2D multi-
modal LLM backbone, which comprises a visual encoder, a visual projection layer, and an LLM. The
visual encoder processes 2D multi-view videos of scanned 3D scenes enriched with depth and pose
information—to extract robust visual features. These features are then mapped into visual tokens
through the projection layer. The visual tokens, in conjunction with the corresponding text tokens,
are subsequently fed into the LLM to generate textual predictions.

To enable prediction of mask features, we follow prior works [23| 14,19} [21] and expand LLM’s
vocabulary with a special [SEG] token, indicating a request for a 3D segmentation mask.

3D Query Decoder. In the final stage, we route the [SEG] token into a decoder module which
built on transformer-based architecture to decode a segmentation mask directly from the superpoint
features F;. By integrating the semantic directive provided by [SEG] with the detailed point-level
features, the decoder effectively translates high-level textual cues into precise segmentation outputs
for the target 3D scene regions.

Training Objectives. Our model jointly optimize both the multi-modal language generation and the
3D segmentation capabilities. The overall loss is formulated as a weighted combination of the three
components as follows:

L=AptmLriym +ABceLBcE + ApiceELpicE

where L1 ensure coherent and accurate text generation, and Lpcp and Lprop help refine
high-quality segmentation masks.



Acc@0.25 Acc@0.50 mIOU

3D-STMN][37] 20.8 13.2 14.4
MDIN([36] 21.2 10.8 15.1
Dense3D* (Ours) 34.3 20.1 232
Dense3D (Ours) 353 20.9 24.0

Table 2: Quantitative results on the 3D scenario-driven segmentation task on DenseScan benchmark
among Dense3D (ours) and existing methods. * represents removing DenseScan dataset from the
instruction tuning dataset.

Acc@0.25 Acc@0.50 mIOU

TGNNI20] 38.6 32.7 28.8
X-RefSeg3DI[30] 40.2 33.5 30.6
3D-STMNI37] 54.6 39.8 39.5
SegPoint[14]] - - 41.7
Dense3D* (Ours) 56.8 33.7 36.6
Dense3D (Ours) 56.5 34.3 37.8

Table 3: Quantitative results on the ScanRefer benchmark among Dense3D (ours) and exisiting
methods (including specialist methods such as 3D-STMNJ[37]] and LLM generalist such as SegPoint
[14]. * represents removing DenseScan dataset from the instruction tuning dataset.

4.3 Experiments

Instruction Tuning Datasets. Our training dataset contains the following three types of datasets: 1)
semantic segementation datasets include ScanNet200 [33]; 2) referring expression datasets includes
ScanRefer 9], Multi3DRefer[40] and ReferIt3D [3]] as short-text referring expression datasets and
DenseScan as long-text referring expression dataset; 3) question answering dataset include ScanQA.

Implementation Detail. The model is trained on 8 NVIDIA A100 GPUs. We adopt the AdamW
optimizer with a learning rate of 3e-4 and use a learning rate scheduler WarmupDecay LR with the
warmup steps of 100. The total batch size is set to be 16. The loss weight parameters A x is set to
1.0, and weight parameters for segmentation Ap;cr and Ao is set to 1.0 and 1.0 respectively. We
adopt the pretrained point cloud encoder following Sparse 3D-Unet [20] as the 3D visual encoder.
We initialize our model with the weight of LLaVA-3D [42], and durring training, we use LoRA[17]
to efficiently finetune the Large Language Model to reduce the computation costs while preserving
the original 3D scene understanding capability.

Evaluation on 3D Scenario-Driven Segmentation. The performance of 3D Scenario-Driven
Segmentation is evaluated on the validation set of DenseScan, and it is shown in Table @ We
performed a comparison between our baseline model to existing methods of various types, inncluding
LLM-based methods and non-MLLM methods. Besides, to better validate the performance of our
model and ensure a fair comparison, we removed DenseScan dataset from the training data, and
denoted Dense3D*. From Table 1, we can see that LLM-based method generally out-perform non-
LLM methods by a large amount, demonstrating its strong 3D scene understanding and reasoning
capabilities over long-text referring expressions, and our baseline Dense3D achieve competitive
performance on DenseScan, outperforming most existing baselines. We also show qualitative results
in Figure

Does Dense Object Descriptions help 3D segmentation? Long-text referring expressions provide
extensive details that enhance a model’s generalization by capturing nuanced attributes and main-
taining long-range dependencies to differentiate similar objects. An interesting question, however,
is whether dense object descriptions also benefit traditional short-context referring expressions. As
shown in Table [3| and Table |4} training on such rich descriptions enables our model to learn fine-
grained associations between language and visual features, ultimately improving its generalization.
Notably, on ScanRefer[9]], despite being trained on long-text data rather than optimized for short,
structured expressions like specialist models (e.g., 3D-STMN), our model achieves comparable
performance in identifying referents in complex real-world scenarios. This demonstrates the effective-
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! countertop and positioned next to a faucet, indicating designed for displaying media, and is currently turned
! its role in daily hygiene routines? "' off, to help you relax by watching your favorite show
or movie?

Figure 4: Visual results for 3D Scenario-Driven Segmentation Task. Each visual output presents a
textual scenario-driven question, along with ground truth point cloud in green regions and predicted
point cloud in orange regions.

Acc@0.25 Acc@0.50 mIOU

M3DRef-CLIP[40] 55.7 37.5 374
SegPoint[14]] - - 36.1
Dense3D* (Ours) 57.1 36.0 38.4
Dense3D (Ours) 57.7 37.5 39.2

Table 4: Quantitative results on the Multi3DRefer benchmark among Dense3D (ours) and existing
methods. * represents removing DenseScan dataset from the instruction tuning dataset.

ness of leveraging long-text multimodal training, suggesting that our approach is not only competitive
with specialized methods but also more adaptable to diverse and realistic tasks.

5 Conclusion

In this paper, we propose a pipeline that leverages state-of-the-art 2D MLLMs to generate high-quality,
multi-level 3D annotations, culminating in the DenseScan dataset, which significantly enhances
linguistic diversity and contextual richness in 3D scene descriptions. Additionally, we introduce 3D
scenario-driven segmentation, a benchmark that challenges models to reason about object interactions
and spatial relationships beyond simple object identification. We also present Dense3D, a 3D MLLM
that integrates 2D multi-view images, 3D point clouds, and textual descriptions to achieve deeper
semantic understanding and more precise segmentation. We hope our work takes a step toward
bridging the gap between 3D MLLMs and real-world applications, demonstrating that high-quality
data and well-structured benchmarks are essential for advancing the field.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract is constructed based on the main contribution and scope of the
paper.
Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer:
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Justification: Limitation is not discussed in the paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include any theoretical results so there’s no proof attached.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper explains implementation details, data annotation pipeline and the
architecture in section[d.3]of the main paper.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Currently we are not planning to release the code.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental Settings and detailed information about design choice are listed
in the main paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The experiment in the paper is a proof of concept and further experiment on
statistical significance will be carried out in the future development.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details of hardware compute resources is mentioned in the section of the
paper.
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: I have reviewed the Code of Ethics and strictly follow the rules.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have mentioned in the introduction section where the current work has
great potential in the field of robotics.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: The paper does not possess such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper and its codebase is developed from scratch by the author without
using existing assets.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not relase new assests so it’s not applicable.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

18


paperswithcode.com/datasets

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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